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Abstract

Despite their successful application in various fields of science and technology, deep neural net-
works remain poorly understood. The ability of overparameterized neural networks to express
complex functions (expressivity) is one of the major theoretical questions, among others. Further-
more, the expressivity of a deep neural network at the initialization is a crucial theoretical aspect
due to the use of local (gradient-based) algorithms for training, which can be analyzed by consid-
ering signal propagation in infinitely wide networks (mean-field limit) as a model. This mean-field
analysis suggests that deep neural networks have an ordered and a chaotic phase, and they achieve
exponential expressivity as a function of depth in the chaotic phase. However, signals become
highly correlated in deep ReLU (Rectified Linear Unit) networks with uncorrelated weights due to
the non-existence of a chaotic phase; this suggests that deep ReLU networks have low expressive
power. Using the mean-field theory of signal propagation, we analyze the evolution of correlations
between signals propagating through a ReLU network with correlated weights. Furthermore, we
show that ReLU networks with anti-correlated weights can avoid this low expressivity outcome
and have a chaotic phase where the correlations saturate below unity. Consistent with this analysis,
we find that networks initialized with anti-correlated weights can train faster by taking advantage
of the increased expressivity in the chaotic phase. Combining this with a previously proposed
strategy of using an asymmetric initialization to reduce dead node probability (probability of the
propagated signals reaching a low sensitivity domain of the ReLU activation function), we propose
an initialization scheme that allows faster training and learning than other initialization schemes
on various tasks.
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Chapter 1

Introduction

Machine learning is a set of algorithms designed to discover meaningful structure in data by experi-
ence with applications to many domains of science and technology. They have shown remarkable
results in computer vision[1, 2, 3], speech recognition[4, 5, 6], intelligent gaming[7], analyzing
particle data [8], drug discovery [9], and protein folding [10], to name a few. The credit of the
remarkable success of machine learning in the last decade mostly goes to deep learning, which
concerns learning useful features (represenations of data) from the raw input data on its own. In
contrast, conventional machine learning methods require a careful construction of useful repre-
sentations to perform complicated tasks; it limits their applications as they require engineering a
feature extractor that needs expertise in various domains. On the other hand, deep learning ma-
chines learn meaningful representations independently and do not require engineering an external
feature extractor.

A deep learning machine consists of multiple layers of representations of the raw data in in-
creasing levels of abstraction. The simplest example of a deep learning machine is a deep neural
network shown in Figure 1.1. At each layer, a non-linear operation with learnable parameters
is applied to achieve high expressivity. The parameters are trained using a chain rule of deriva-
tives, called the backpropagation algorithm. The high-level representations learned are capable
of differentiating various patterns and suppressing noise within the raw data. Other architectures
include deep convolutional neural networks (CNNs), [11] and recurrent neural networks (RNNs)
[12], which are specialized neural networks for image and text data. They have shown remarkable
success in image recognition, audio and video processing, speech recognition, and language trans-

1



Figure 1.1: A deep neural network with multiple layers of neurons stacked together. It has three
major components —an input layer to which input data is fed, an output layer that outputs the gen-
erated signal, and multiple hidden layers that transform the input into high-level representations.
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lations. In this work, we will focus on deep neural networks; for further reading about CNNs and
RNNs, we suggest Ref. [13].

The most common form of machine learning is supervised learning, which involves learning
input-output maps/functions from examples. Supervised learning improves upon Reinforcement
learning by guiding the machine by directional improvement for the parameters rather than just
a boolean response. The first step in supervised learning is to randomly initialize the machine
with learnable parameters, often called weights. Next, consider a fixed set of input-output pairs,
called a training set. As the machine is untrained, it computes random output for a given input
dataset. An average error (over the training set), often called loss or cost, of the desired and
machine-generated output is computed, and the learnable parameters are tuned to minimize this
loss function. It is a highly non-convex optimization problem with millions of parameters and
no assurance of attaining the global minimum. We can think of this process as navigating the
system to a reasonable minimum of the high-dimensional loss landscape (see Figure 1.2 for a
pictorial representation in one dimension). The parameters are updated using a gradient-based
algorithm like Stochastic Gradient Descent (SGD), which adjusts the weights by moving towards
the opposite direction to the gradient vector at the current coordinates. We repeat the process
from this newly arrived coordinates (weights here) till we reach a reasonable minimum of the
loss landscape. Finally, we measure the generalization performance, a measure of performance
on unseen data, of the learned map on new examples by calculating the loss for a different set of
examples, often called a testing set.

The training procedure involves making several choices, which can completely change the
training dynamics. It includes choosing the number of layers, non-linear operation at each layer,
distribution for parameter initialization, loss function, optimization algorithm, and training time.
These are called hyperparameters, which can be selected by optimizing them over a set of exam-
ples, called a validation set. We can calculate the generalization using the testing set, as usual, for
the machine with optimal hyperparameters. Often, it is not feasible to obtain the optimal hyper-
parameters by sheer brute force. Theoreticians and practitioners provide some guidelines to select
these hyperparameters, but there remain several open-end questions to be answered.

Despite their success in various fields, deep learning algorithms are not well understood and are
often treated as black boxes. Even the simplest of deep learning algorithms, feed-forward neural
networks, lack a mathematical foundation. The ability of overparameterized neural networks to
express complex functions (expressivity) is one of the central theoretical questions, among others.

3



Figure 1.2: Pictorial representation of the optimization of the loss function L (wl
i j,b

l
i) (y axis) with

respect to one of its parameters denoted by wl
i j (x axis). The loss function measures the distance

between the desired and network generated output. The neural network parameters (coordinates
of this loss landcape) are updated by moving in a direction opposite to the gradient vector at the
current coordinates. This process is repeated until convergence. In general, a neural network
landscape has an order of O(N2L) parameters, where N is the width and L is the depth of the
network.

An ensemble of networks with lower expressivity can be thought of as having high correlations
between two different output signals, whereas networks with higher expressivity will have lesser
correlations between any two output signals. Furthermore, the expressivity of a deep neural net-
work at the initialization is a crucial theoretical aspect due to the use of local (gradient-based) al-
gorithms for training, which can be analyzed by considering signal propagation in infinitely wide
networks (mean-field limit) as a model. This mean-field analysis suggests that deep neural net-
works have an ordered and a chaotic phase, and they achieve exponential expressivity as a function
of depth in the chaotic phase. However, signals become highly correlated in deep neural networks
with ReLU activation (see Figure 1.3) initialized with uncorrelated Gaussian weights. Due to the
non-existence of a chaotic phase, deep ReLU networks have low expressive power. However, in
practice, they approximate complex functions. Therefore, in this thesis, we focus on the mean-field
theory of signal propagation through deep ReLU networks and its implications on initializing them
for better performance.
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We organize the thesis as follows. First, we begin by reviewing deep neural networks in Section
1.1 and describe the signal propagation problem and its application to initializing deep neural
networks. Next, we review the features and complexities of deep ReLU networks in Section 1.2,
which is the central focus of this work.

The second chapter describes the methods used to analyze deep neural networks and the train-
ing tasks to validate the new results of this work. Section 2.1 reviews a simple method to derive
the mean-field equations for signal propagation. Section 2.2 reviews an alternate method based
on a path integral approach to derive the mean-field equations and their applications for studying
perturbations applied to a deep neural network. Lastly, Section 2.3 describes various tasks based
on the teacher-student setup used to validate the new results of this work.

The third chapter introduces a new initialization scheme for deep ReLU networks and demon-
strates its advantage over other initialization schemes. Section 3.1 analyzes mean-field equations
for signal propagation with correlated weights and introduces Anti-Correlated Initialization (ACI)
for ReLU networks. Section 3.2 studies the training dynamics and performance of ReLU networks
with correlated weights. Section 3.3 combines ACI with a previously proposed strategy of using
asymmetric weights and introduces Random Asymmetric Anti-correlated Initialization (RAAI),
which is the main result of this thesis. Section 3.4 compares various initialization schemes for
ReLU networks over training tasks described in Section 2.3. Lastly, chapter 4 concludes this thesis
by discussing various aspects of this new initialization scheme.

1.1 Deep Neural Networks

A feed-forward neural network with multiple layers is the simplest example of a deep learning
machine. It consists of neuron layers stacked together, as shown in Figure 1.1. The value at each
node, called an activation, is obtained by considering a multi-linear transformation of the last layer,
followed by a non-linear activation function. The value at the node before applying the non-linear
activation is called a pre-activation. The input signal propagates left to right, going through an
alternate sequence of multi-linear expansion and non-linear folding, each having learnable param-
eters. The output of a neural network can be continuous or categorical.

Despite its success, the construction of a successful deep neural network remains highly prac-
ticed, with no clear conceptual basis [14]. It raises various theoretical questions about how and
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when they work. For example, is deeper network always better? How information propagates
through deep neural networks? What are the necessary conditions to train them? Why and when
do they generalize? How SGD attains a good solution avoiding local minima? In this thesis, we
aim to understand a few of these questions from the perspective of statistical physics and informa-
tion theory. In particular, we explore the signal propagation problem in deep neural networks and
its application weight initialization.

Consider a feed-forward neural network with L layers with Nl neurons in layer l. For an input
signal x from a training set T , we denote the pre-activation at node i in layer l by hl

i(x) and
activation by sl

i(x). Here, we write sl
i(x), hl

i(x) to show the explicit dependence of the activation,
pre-activation on the input signal x. A signal (sl−1

1 , . . ,sl−1
Nl

) at layer l−1 propagates to layer l by
the rule

hl
i(x) =

Nl−1

∑
j=1

wl
i js

l−1
j (x)+bl

i

sl
i(x) = φ(hl

i(x)),

where φ is a non-linear activation function and wl
i j, bl

i are tunable parameters called weights
and biases. ReLU, φ(x) = max(0,x), is the most widely used activation function; other choices
include sigmoid, tanh, and swish. Figure 1.3 shows some common activation functions. A common
feature of all these continuous functions is that they are many-to-one and tend to fold the input
space. Moreover, they are inspired mainly by physical systems. For example, asymmetric ones
(ReLU and swish) mimic non-linear threshold dynamics, whereas symmetric functions (sigmoid
and tanh) are inspired by complex systems that start slowly, accelerate and saturate over time (like
bacterial growth curve).
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Figure 1.3: Some commonly used activation functions for deep neural networks.

In this work, we will restrict ourselves to Gaussian distribution for initializations. Throughout
this thesis, we will denote Gaussian distriibution with mean µ and variance σ2 as N (µ,σ2).
Using this notation, the weights and bias distributions are wl

i j ∼N (0, σ2
w

Nl−1
), bl

i ∼N (0,σ2
b ). This

reduces the parameter distribution to have only two tunable hyperparameters, σ2
w, and σ2

b . The
later sections show that only a subspace of these parameters ensures optimal information flow
through the network. Note that the 1/Nl−1 scaling in the weight’s variance ensures that the input
contribution from the last layer to each neuron is O(1) for large width Nl−1.

Next, we consider a loss function L (wl
i j,b

l
i), which measures the distance between the gen-

erated and desired output. For continuous outputs, mean-squared error (MSE), and for categorial
output, sparse cross-entropy are common choices. Initially, the weights and bias are random, and
consequently, the output is random as well. Therefore, the average loss is initially large, and we
aim to tune the weights and bias to minimize this loss. An ideal initialization would start with a
tiny loss and have a straightforward path towards the minima. Furthermore, we calculate gradient
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vectors for the weights
∂L (wl

i j,b
l
i)

∂wl
i j

and bias
∂L (wl

i j,b
l
i)

∂bl
i

using the loss function at the current coor-

dinates {wl
i j,b

l
i} of the loss landscape, using chain-rule of derivatives (known as backpropagation

algorithm), and move the weights in a direction opposite to this gradient vector. This procedure is
summarised pictorially in Figure 1.2. Stochastic gradient descent is a commonly used update rule
for updating the parameters given by

wl
i j = wl

i j−η
∂L (wl

i j,b
l
i)

∂wl
i j

bl
i = bl

i−η
∂L (wl

i j,b
l
i)

∂bl
i

,

(1.1)

where η is the step size (called learning rate), and the partial derivates are the averaged gradient
vectors over the training set. The averaged gradient vector is usually calculated for a randomly
picked subset of the training set, called a mini-batch. Estimating the gradient vector for a mini-
batch reduces the matrix size, which speeds up computations. Also, the randomness introduced
due to the mini-batch procedure may help in escaping local minima. Other popular optimizer
choices include Adam [15], RMSprop [16], and Adadelta [17], which improve on this procedure.
Adadelta and RMSprop normalize the gradients in Eqn. 1.1 by their exponentially weighted root
mean squared value to make a similar size update in all directions. This process can be viewed
as making the loss landscape symmetrical around the local minima. Adam further improves on
Adadelta and RMSprop by considering an exponentially weighted average of the gradients in Eqn.
1.1, which can be viewed as imparting momentum to the system. For a review on gradient-based
optimizers, we suggest reading Ref. [18]. Next, we update the weights till convergence; the
number of times the optimization procedure goes through the entire dataset is called an epoch.
Finally, we calculate the generalization performance on an unseen testing dataset.

It may be of concern that these local algorithms will get stuck in local minima, but they are
pretty efficient at finding reasonably good solutions. There are two lines of thought for this. First,
in high dimensions, the probability of encountering a local minimum is relatively low unless we
are already at the bottom [14]. Thus, most of the fixed points encountered are saddle points.
Second, the randomness induced by using a mini-batch procedure helps escape local minima when
encountered. Moreover, the solutions found by SGD generalize well to unseen examples. Multiple
studies hint that due to its stochastic nature, SGD is biased towards flat minima, which are less
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prone to changes in the loss landscape due to the finite size of the training set [19]. Nevertheless, it
is challenging to train deep networks with millions of parameters with gradient-based algorithms
[20, 21]. These optimizers suffer from vanishing and exploding gradient problems. Sometimes,
the backpropagating gradient becomes too tiny and prevents the weights from changing, leading
to a perpetually inactive state. This is called the vanishing gradient problem. On the other hand,
the exploding gradient problem occurs when the gradients become too large, leading to drastic
changes in the weight update, leading to failure in learning. These problems are more profound
in deeper networks as repeated non-linear operations might lead to vanishing or explosion of the
input signal.

Several methods are proposed to overcome the vanishing/exploding gradient problem; these
can be classified into three categories [22]. The first approach modifies the architecture, which in-
cludes using modified activation functions [23, 3, 24, 25, 26, 27], adding connections between non-
consecutive layers (residual connections)[28], and optimizing network depth and width. However,
the proposed activations are often computationally less efficient and require a fine-tuned parame-
ter [22]. The second approach relies on normalization techniques [29, 30, 31, 32, 33], in which
either the input signals or weights are normalized after some steps to ensure that the signal and the
corresponding gradients do not vanish or become large. For example, we can normalize the input
signals to have zero mean and unit variance after propagating through each layer. The most popular
normalizing technique is batch normalization [30]. Batch normalization prevents the vanishing and
exploding gradients by normalizing the output at each layer but with an additional computational
cost of up to 30% [34]. A related strategy involves using the self-normalizing activation (SeLU),
which ensures output with zero mean and unit variance by construction [26]. The third approach
focuses on the initialization of the weights and biases. A careful initialization may avoid vanish-
ing and exploding gradient problems and help the system to find a reasonable minimum relatively
quickly [35]. He-initialization [3] for ReLU activation and Glorot-initialization [36]for sigmoid
type activations are commonly used strategies. In Glorot initialization, weights are drawn from
N (0,1/N), where N is the width of the network. The 1/N scaling factor ensures that the length of
the signal does not become too large or too small after repetitive application of the weight matrix
in a deep network. He initialization specializes this approach to ReLU activation. The extra factor
of two takes into account that ReLU outputs a non-zero value only for positive inputs.

A growing body of work has analyzed infinitely wide networks (mean-field limit) as a model
to study deep neural networks [37, 38, 39, 40, 41, 42, 43, 44]. In particular, Ref. [38, 40] stud-
ies the signal propagation problem and suggests conditions for optimal flow through a network.
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Furthermore, initializing the network at these optimal parameters avoids vanishing and exploding
gradient problems while training. This thesis aims to improve the initialization scheme for deep
neural networks with a ReLU activation guided by the mean-field theory of signal propagation. In
the following section, we review the features and complexities of deep ReLU networks.

1.2 Deep ReLU Networks

ReLU, φ(x) = max(0,x), outperforms most of the other activation functions proposed [36]. It has
several advantages over other activations. First, the ReLU activation function is computationally
simple as it essentially involves only a comparison operation. Second, ReLU suffers less from van-
ishing gradients, a major problem in training networks with sigmoid-type activations that saturate
at both ends [1]. For a large value of the input (|x|> 4.5), sigmoid and tanh activation saturate (see
Figure 1.3), and their first derivative is zero, encountered while updating weights (see Eqn.1.1).
Finally, ReLU networks are known to generalize well even in the overly parameterized regime
[45], which does not fit our intuition from polynomial regression.

Despite its success, ReLU also has a few drawbacks, one of which is the dying ReLU problem
[3, 24]. The dying ReLU is a type of vanishing gradient problem in which the network outputs zero
for all inputs (all pre-activations are non-positive) and is dead. There is no gradient flow in this
state. Recently, Ref. [22] proposed Random Asymmetric initialization (RAI), which reduces the
probability of dead node at the initialization. ReLU also suffers from exploding gradient problem
sometimes, which occurs when backpropagating gradients become large [46]. In this work, we
aim to improve the initialization scheme for ReLU networks using the mean-field theory of signal
propagation.

Multiple studies analyzed ReLU networks in the large width limit, attempting to unravel mys-
teries about ReLU activations. For example, Ref.[42] showed that correlations in input signals
propagating through a ReLU network always converge to one. Many other works found that ReLU
networks are biased towards simpler functions [47, 48, 49, 50, 51], which may account for their
better generalization properties even in the overly parameterized regime. However, from their suc-
cessful application in different domains, one may guess that they should be capable of computing
more complex functions. Thus, there might be a subspace of the parameters where the network
can represent complex functions.

10



Ref. [43, 44] applied weight and input perturbations to analyze the function space of ReLU
networks. They found that ReLU networks with anti-correlated weights explore the function space
farther than uncorrelated/positively correlated weights. Ref. [52] found that ReLU CNN’s pro-
duce anti-correlated feature matrices after training. These two studies motivated us to analyze the
correlation properties of signal propagation in anti-correlated ReLU networks.

Following the mean-field theory of signal propagation proposed by Ref. [38], we found that
ReLU networks with anti-correlated weights have a chaotic phase, which implies higher expres-
sivity. In contrast, ReLU networks with uncorrelated weights do not have a chaotic phase. Further-
more, we find that initializing ReLU networks with anti-correlated weights results in faster train-
ing. We call it Anti-correlated initialization (ACI). Further performance improvement is achieved
by incorporating RAI, which reduces the dead node probability. This combined scheme, which
we call Random anti-correlated asymmetric initialization (RAAI), is the main result of this work
and is defined as follows. We pick weights and bias incoming to a neuron from anti-correlated
Gaussian distribution (like Eqn. 3.1) and replace a randomly picked weight/bias with a random
variable drawn from a beta distribution. The code to generate weights drawn from the RAAI dis-
tribution is given in Appendix D. We analyze the correlation properties of RAAI and show that it
performs better than the best-known initialization schemes on tasks of varying complexity. It may
be of concern that initialization in an expressive space may lead to overfitting, and we do observe
the same for ACI for some tasks. In contrast, RAAI shows no signs of overfitting and performs
consistently better than all other initialization schemes.

The next chapter describes the methods used to quantify the above results. We begin by re-
viewing the mean-field theory of signal propagation, and later, we describe the training tasks used
to quantify the performance of different initialization schemes.
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Chapter 2

Methods

This chapter describes the theoretical and numerical methods used in this work. The first two
sections review the mean-field theory of signal propagation in deep neural networks using two
methods. First, we derive the mean-field equations, which describe how the correlations between
input signals evolve while propagating through a deep neural network. Next, we describe another
method, based on generating functionals, to derive the same equations. The latter approach is more
general and can be used to study perturbations applied to deep neural networks. The last section
describes the various training task used to compare proposed initialization schemes with previously
proposed ones.

2.1 Mean-field theory of signal propagation in deep neural net-
works

We begin by reviewing a mean-field approach proposed by Ref. [38, 40] to analyze signal prop-
agation through infinitely wide neural networks. In the next chapter, we modify this mean-field
analysis to analyze ReLU networks with anti-correlated and asymmetric weights.

Consider a fully connected neural network with L layers with Nl neurons in layer l. For an
input signal x, we denote the pre-activation at node i in layer l by hl

i(x) and activation by sl
i(x). A
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signal (sl−1
1 , . . ,sl−1

Nl
) at layer l−1 propagates to layer l by the rule

hl
i(x) =

Nl−1

∑
j=1

wl
i js

l−1
j (x)+bl

i

sl
i(x) = φ(hl

i(x)),

(2.1)

where φ is the non-linear activation function and wl
i j ∼ N (0, σ2

w
Nl−1

), bl
i ∼ N (0,σ2

b ) are the
weights and biases. Note that the 1/Nl−1 scaling in the weight’s variance ensures that the input
contribution from the last layer to each neuron is O(1).

To track the layer-wise information flow, consider the normalized length and overlap of the
pre-activations for two input signals x1,x2, reaching layer l

ql
h(xa) =

1
Nl

Nl

∑
i=1

(
hl

i(xa)
)2

where a ∈ {1,2}

ql
h(x1,x2) =

1
Nl

Nl

∑
i=1

hl
i(x1)hl

i(x2).

The covariance matrix between the signals is obtained by performing appropriate averages of
ql

h over input signals.

Assuming self averaging, consider an average over all possible networks, i.e., the weights and
biases. For simplicity of notations later, we use the same symbol for averaged ql

h.

ql
h(xa) =

1
Nl

〈
Nl

∑
i=1

(hl
i(xa))

2

〉
=

Nl−1

∑
j,k=1

〈
wl

i jw
l
ik

〉
φ(hl−1

j (xa)φ(hl−1
k (xa)+

〈
(bl

i)
2
〉
,

ql
h(x1,x2) =

1
Nl

〈
Nl

∑
i=1

hl
i(x1)hl

i(x2)

〉
=

Nl−1

∑
j,k=1

〈
wl

i jw
l
ik

〉
φ(hl−1

j (x1))φ(hl−1
k (x2))+

〈
(bl

i)
2
〉
,

where 〈..〉 denotes an average over the weights and biases. Since the weights and biases are
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uncorrelated, we obtain

ql
h(xa) =

σ2
w

Nl−1

Nl−1

∑
j

(
φ(hl−1

j (xa)
)2

+σ
2
b

ql
h(x1,x2) =

σ2
w

Nl−1

Nl−1

∑
j

φ(hl−1
j (x1))φ(hl−1

k (x2))+σ
2
b .

For large Nl−2, each hl−1
i (x) is a weighted sum of uncorrelated random variables (see Eqn.

2.1). Thus, we expect the distribution of hl−1
i (x1),hl−1

i (x2) to converge to a zero-mean Gaussian
with a covariance matrix given by

Σ
l−1
h (x1,x2) =

[
ql−1

h (x1) ql−1
h (x1,x2)

ql−1
h (x1,x2) ql−1

h (x2)

]
.

On replacing the average over nodes by Gaussian distribution with appropriate covariance, we
obtain iterative maps for the length and overlap

ql
h(x) = V

(
ql−1

h (x) | σ2
w,σ

2
b

)
ql

h(x1,x2) = C
(

cl−1
h (x1,x2),ql−1

h (x1),ql−1
h (x2) | σ2

w,σ
2
b

)
,

(2.2)

where the map V is given by

V
(

ql−1
h (x) | σ2

w,σ
2
b

)
= σ

2
w

∫
Dz φ

(√
ql−1

h (x) z
)2

+σ
2
b , (2.3)

and the map C is given by

C
(

cl−1
h (x1,x2),ql−1

h (x1),ql−1
h (x2) | σ2

w,σ
2
b

)
= σ

2
w

∫
Dz1Dz2 φ(u1)φ(u2)+σ

2
b

u1 =
√

ql−1
h (x1)z1, u2 =

√
ql−1

h (x2)

[
cl−1

h (x1,x2)z1 +
√

1− (cl−1
h (x1,x2))2z2

]
.

(2.4)
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Here cl
h(x1,x2) = ql

h(x1,x2)/
√

ql
h(x1)ql

h(x2) is the correlation coefficient between the two sig-
nals reaching layer l, and Dz is the standard Gaussian measure.

Ref. [38] found that the signal’s length reaches its fixed point within very few layers, and the
fixed point of the correlation coefficient, c∗h(x1,x2), can be estimated with the assumption that ql

h(x)

has reached its fixed point q∗(x). We can write Eqn. 2.4 under this assumption

C
(

cl−1
h (x1,x2),q∗h(x) | σ2

w,σ
2
b

)
= σ

2
w

∫
Dz1Dz2 φ(u1)φ(u2)+σ

2
b

u1 =
√

q∗h(x) z1, u2 =
√

q∗h(x)
[

cl−1
h (x1,x2) z1 +

√
1− (cl−1

h (x1,x2))2 z2

]
.

(2.5)

It is easy to see that c∗h(x1,x2) = 1 is always a fixed point of the recursive map. The stability of
the fixed point c∗h(x1,x2) = 1 is determined by

χ1 ≡
∂cl

h(x1,x2)

∂cl−1
h (x1,x2)

∣∣∣
cl−1

h (x1,x2)=1
= σ

2
w

∫
Dz [φ ′(

√
q∗(x) z)]2.
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(a) (b)

Figure 2.1: Phase diagram for tanh and ReLU networks with Gaussian distributed weights. (a) tanh
networks have two phases. First, an ‘ordered’ phase where the correlations converge to one, and
second a ‘chaotic’ phase, where the correlations converge to fixed point c∗h(x1,x2) < 1. The two
phases are separated by the boundary χ = 1. (b) ReLU networks with uncorrelated weights also
have two phases. First, a ‘bounded’ phase where length’s fixed point q∗(x) is finite, and second, an
‘unbounded’ phase in which the length diverges. The two phases are separated by σ2

w = 2. In both
phases, any two signals will eventually become correlated.

χ1 separates the parameter space into two phases - first, an ‘ordered’ phase with χ1 < 1, where
the c∗h(x1,x2) = 1 fixed point is stable; and second, a ‘chaotic’ phase with χ1 > 1, where the
c∗h(x1,x2) = 1 fixed point is unstable. χ1 = 1 defines the phase boundary line. Figure 2.1a shows
the phase diagram of tanh activation. In the ordered phase, two distinct signals will become per-
fectly correlated asymptotically. In the chaotic phase, the correlations converge to a stable fixed
point below unity. In this phase, even two closely related signals will eventually lose correlations.
Both the ordered and the chaotic phase modify the correlations between the input signals. If this
modification is too drastic, it might lead to training failure. For example, if we consider a cat vs.
dog image classification task. The network may find it difficult to differentiate between a cat and
a dog image in the ordered phase, whereas it may face difficulties in keeping two cat images in
the same class in a chaotic phase. The parameters at the phase transition boundary do not modify
the input correlations, and therefore, correspond to optimal information flow through the network.
Note that these problems would only occur in deep neural networks; shallow networks do not
suffer from this problem.

Ref. [40] extended this analysis by deriving the depth scales associated with the fixed points.

17



We begin by expanding the recurrence relations around the fixed point up to the first order of
magnitude, i.e.,

ql
h(x) = q∗(x)+ ε

l
q

cl
h(x1,x2) = 1+ ε

l
c.

Here, we have already assumed that the fixed points exist, which implies ε l
q,ε

l
c→ 0 as l→ ∞

.This might not be valid in general (for example, see the analysis for the ReLU function below).
Furthermore, we write ε l

q ∼ e−l/ξq , ε l
c ∼ e−l/ξc , where ξq,ξc are the depth scales given by

ξ
−1
q =− log

[
χ1 +σ

2
w

∫
Dz φ

′′(
√

q∗(x)z)φ(
√

q∗(x)z)
]

ξ
−1
c =− log

[
σ

2
w

∫
Dz1 Dz2 φ

′(u∗1)φ(u
∗
2)

]
u∗1 =

√
q∗(x)z1;

√
q∗(x)

(
c∗(x1,x2) z1 +

√
1− (c∗(x1,x2))2 z2

)
.

The correlation coefficient depth scale further simplifies to ξ−1
c =− log χ1 in the ordered phase

c∗(x1,x2) = 1. It is easy to see that the depth scale ξ−1
c diverges at the phase transition boundary

given by χ1 = 1, given that q∗(x),c∗(x1,x2) exist.

The discussion so far in this section applies to a general non-linear activation φ . Now we will
focus on the case of ReLU activation. The above analysis is applied assuming q∗(x) is finite shows
that ReLU networks do not have a chaotic phase, and any two signals propagating through a ReLU
network become asymptotically correlated for all values of (σ2

w,σ
2
b ). In other words, c∗(x1,x2) = 1

is always a stable fixed point in the regime where signal strength is bounded.

However, we can still classify the parameter space of the network into two phases based on the
boundedness of the fixed point q∗(x) of the length map (Eqn. 2.3). First, a ‘bounded’ phase where
q∗(x) is finite and non-zero; second, an ‘unbounded’ phase, where q∗(x) is either zero or infinite
[41, 53]. Fig. 2.1b depicts the phase diagram for ReLU networks. The two phases are separated
by the boundary σ2

w = 2. Initializing ReLU networks with (σ2
w,σ

2
b ) = (2,0) is commonly known
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as He initialization [3]. The analysis of the stability of c∗(x1,x2) = 1 fixed point in ReLU networks
is valid only in the bounded phase. However, numerical results presented below indicate that the
fixed point remains stable even in the unbounded phase.

In Fig. 2.2, we show the values of the length and correlation coefficient as a function of
the variance of weights after uncorrelated signals have propagated through l layers. The above
quantities were calculated by first averaging over M = 1024 input signals, then averaging over 40
networks initialized with independently picked wl

i j ∼N (0,σ2
w/N), where we have considered a

constant width Nl = N = 2048. As the critical boundaries do not depend on the variance of bias,
we show results for σ2

b = 0.1 only. We observe the results as predicted by Eqn. 2.2. The signal’s
length starts to diverge at σ2

w = 2, and the correlation coefficient after propagation through 32
layers is almost one. Therefore, the numerical results validate the predicted results, validating the
mean-field analysis.

Figure 2.2: The above plots show the length and the correlation coefficient of the signals after
propagating through l layers in a ReLU network. We calculate the length and the correlation
coefficient for M = 1024 input signals, averaged over 40 networks with a constant width N =
2048. In the first panel, the dashed line indicates the theoretical phase boundary σ2

w = 2, and
the solid black line denotes the theoretical prediction for the length’s fixed point. The theoretical
results correctly predict the length and correlation coefficient’s fixed point, validating the mean-
field analysis. Note that the apparent crossing point before σ2

w = 2 is due to finite bias, and the
phase boundary is indeed at σ2

w = 2. On considering zero bias, we observe that the crossing point
overlaps with the critical point. As the critical boundaries do not depend on the variance of bias,
we show results for σ2

b = 0.1 only.

High expressivity is a crucial feature of a deep neural network. A network with high expressive
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power could represent complex functions. Using Reimann geometry, Ref. [38] demonstrated that
deep neural networks achieve exponential expressivity in a chaotic phase as a function of depth.
However, as correlations between two signals always converge to one, ReLU networks may not
be very expressive. Multiple studies suggest that ReLU networks are biased towards simpler func-
tions, supporting the observation. If that is the case, then ReLU networks should be incapable
of performing complex tasks. However, they do work in practice, despite their poor expressive
power. Of particular interest are two studies, which suggest that ReLU networks can be more ex-
pressive with anti-correlated weights. First, Ref. [52] found that a trained ReLU CNN’s feature
matrices are negatively correlated. Another study, Ref. [43], reveals that ReLU networks with
anti-correlated weights explore a richer function space on applying perturbations when compared
with those with uncorrelated weights. This motivated us to analyze the critical properties of anti-
correlated ReLU networks. In Section 3.1, we analyze the mean-field theory of signal propaga-
tion with anti-correlated weights. Furthermore, we show that ReLU networks with anti-correlated
weights have a chaotic phase, unlike uncorrelated weights. Before that, we review an alternative
method to derive the mean-field equations using generating functionals in the following section.

2.2 Mean-field theory of signal propagation using a path inte-
gral approach

This section reviews a path integral-based approach to derive mean-field equations for signal prop-
agation in deep neural networks introduced by Ref. [43], which study perturbations applied to deep
neural networks. However, we observed that the method above yields the mean-field equations for
signal propagation if no perturbation is applied. The key difference from the approach in Section
2.1 is that Ref. [43] defines the covariance matrix over the activations to track the information flow
instead of pre-activations. However, the equations observed are the same, up to a variable change,
and the fixed point analysis remains valid. Therefore, this section unifies the two approaches by
providing a relation between the averaged covariance matrix for activations and pre-activations.
We also demonstrate the effect of perturbations on the fixed point c∗h(x1,x2) = 1. Note that we do
not use this methodology in the next chapter on methods as the calculations become increasingly
complicated.

We consider two signals, x1 and x2, propagating through two deep neural networks in a variant
of a teacher-student setup. To differentiate between the teacher and student network parameters, we
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use ‘ˆ’ to denote teacher variables. First, we draw the teacher network weights from a zero-mean
Gaussian distribution ŵl

i j ∼ N (0,σ2
w/Nl−1) and then obtain the student weights by applying a

perturbation of form wl
i j =

√
1− (η l)2ŵl

i j +η lδwl
i j, where η l is the perturbation strength at layer

l and δwl
i j ∼N (0,σ2

w/Nl−1), drawn independently of ŵl
i j. Similarly, we draw the teacher bias

from a Gaussian distribution b̂l
i ∼ N (0,σ2

b ) and obtain the student bias by the same procedure
bl

i =
√

1− (η l)2b̂l
i + η lδbl

i . Note that the limit η l → 0 corresponds to the signal propagation
problem described in the last section. We can think of this setup as a toy model to study random
perturbations applied to a deep neural network while training. For example, to study randomness
introduced by mini-batch and dropout procedures.

For the activation sl
i(x) , consider the joint probability

P
(

sl
i(x)|wl,sl−1(x)

)
=

√
β

2π
exp
(
−β

2

[
sl

i(x)−φ(hl
i(x))

]2
)
,

where β quantifies the strength of noise, introduced for calculation purposes. However, we can
use it to study noisy computations, which is a separate problem in itself. Similar to Section 2.1, we
track the layer-wise overlap of the two signals by the covariance matrix between the activations

ql
s(xa) =

1
Nl

Nl

∑
i=1

(
sl

i(xa)
)2

where a ∈ {1,2}

ql
s(x1,x2) =

1
Nl

Nl

∑
i=1

sl
i(x1)sl

i(x2).

Later, we will observe that this covariance matrix is the ‘natural’ choice of order parameters
for this system.

Consider a generating functional of form

Γ[ψ̂,ψ] =

〈
exp(−ι ∑

l,i
(ψ̂ l

i ŝl
i(x1)+ψ

l
i sl

i(x2))

〉
,

where the angular brackets 〈..〉 represent an average over the weights, biases, and the internal
degrees of freedom (activations and pre-activations). We can obtain the quantities of interest by
calculating appropriate derivatives of the generating functional. For example,
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〈
ql

s(x1,x2)
〉
=− 1

Nl

Nl

∑
i=1

lim
ψ̂ l

i ,ψ
l
i→0

∂ 2

∂ψ̂ l
i ∂ψ l

i
〈Γ[ψ̂,ψ]〉 .

For the ease of future notations, we will denote the averaged generating functional by Γ, the
averaged overlap by ql , and the activations and pre-activations by sl

i and hl
i . For simplicity, we

will consider a constant width across all layers Nl = N, but the results are valid for all Nl , as long
as it is large. We aim to write the averaged generating functional as Γ ∼ eNΨ, where Ψ is called
the rate function. In the infinite width limit N → ∞, the generating functional is dominated by
the extremum of Ψ. Therefore, the condition for the extremum of Ψ will give us the mean-field
conditions.

The averaged generating functional has the form

Γ =
∫ L,N

∏
l,i, j=1

dŵl
i j d(δwl

i j) db̂l
i d(δbl

i) P(ŵl
i j)P(δw

l
i j)P(b̂

l
i)P(δbl

i)×

×
∫ L,N

∏
l=0,i=1

dŝl
i dsl

i P
(

ŝl
i|ŵl, ŝl−1

)
P
(

sl
i|wl,sl−1

)
exp
(
−ι(ψ̂ l

i ŝl
i +ψ

l
i sl

i)
) (2.6)

We will introduce the relation hl
i = ∑ j wl

i js
l−1
j through the integral representation of the δ

function

δ (ĥl
i−∑

j
ŵl

i j ŝ
l−1
j ) =

∫ dx̂l
i

2π
eι x̂l

i(ĥl
i−∑ j ŵl

i j ŝ
l−1
j )

δ (hl
i−∑

j
wl

i js
l−1
j ) =

∫ dxl
i

2π
eιxl

i(hl
i−∑ j wl

i js
l−1
j ).

Introducing the above equations makes the generating functional representation complicated.
So, we focus on the weights and activation integrals separately. First, we will consider the weight
average, which gives
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=
L,N

∏
l,i, j=1

∫
dŵl

i j dwl
i jP(ŵ

l
i j)P(δwl

i j) exp
(
−ι

[
ŵl

i j

(
x̂l

i ŝ
l−1
j +

√
1− (η l)2 xl

is
l−1
j

)
+η

l
δwl

i jx
l
is

l−1
j

])

=
L,N

∏
l,i=1

exp

(
−σ2

w
2

[
(x̂l

i)
2

(
∑ j(ŝl

j)
2

N

)
+(xl

i)
2

(
∑ j(sl

j)
2

N

)
+2
√

1− (η l)2x̂l
ix

l
i

(
∑ j ŝl

js
l
j

N

)])
.

If we introduce the following order parameters through the integral representations of the δ

function

δ (ql
11−

1
N ∑

j
(ŝl

j)
2) =

∫ dQl
11

2π/N
eιNQl

11[q
l
11−

1
N ∑ j(ŝl

j)
2]

δ (ql
22−

1
N ∑

j
(sl

j)
2) =

∫ dQl
22

2π/N
eιNQl

22[q
l
22−

1
N ∑ j(sl

j)
2]

δ (ql
12−

1
N ∑

j
(ŝl

js
l
j)) =

∫ dQl
12

2π/N
eιNQl

12[q
l
12−

1
N ∑ j(ŝl

js
l
j)],

the result from the weight average simplifies to

=
L,N

∏
l,i=1

exp
(
−σ2

w
2

[
(x̂l

i)
2ql−1

11 +(xl
i)

2ql−1
22 +2

√
1− (η l)2x̂l

ix
l
iq

l−1
12

])
.

We can perform the bias integral similarly, which yields

=
L,N

∏
l,i=1

∫
db̂l

i dbl
iP(b̂

l
i)P(δbl

i) exp
(
−ι

[
b̂l

i

(
x̂l

i +
√

1− (η l)2 xl
i

)
+η

l
δbl

ix
l
i

])

=
L,N

∏
l,i=1

exp
(
−

σ2
b

2

[
(x̂l

i)
2 +(xl

i)
2 +2

√
1− (η l)2x̂l

ix
l
i

])
.

We combine the results from the weight and bias averages, which gives
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=
L,N

∏
l,i=1

exp
(
−1

2

[
(x̂l

i)
2
(

σ
2
wql−1

11 +σ
2
b

)
+(xl

i)
2
(

σ
2
wql−1

22 +σ
2
b

)
+2
√

1− (η l)2x̂l
ix

l
i

(
σ

2
wql−1

12 +σ
2
b

)])
.

Next, we introduce the doublet X l
i =

[
x̂l

i xl
i

]T
to write the above equation compactly as

= ∏
l,i

exp
(
−1

2
(X l

i )
T

Σl−1X l
i

)
,

where the covariance matrix Σl−1 is given by

Σl−1 =

[
ql−1

11

√
1− (η l)2ql−1

12√
1− (η l)2ql−1

12 ql−1
22

]

Finally , we substitute this result to get the disordered averaged (weights and bias) generating
functional

Γ =
L

∏
l=0

∫ dQl
11dql

11
2π/N

dQl
22dql

22
2π/N

dQl
12dql

12
2π/N

eιN[Ql
11ql

11+Ql
22ql

22+Ql
12ql

12]×

×
L,N

∏
l,i=1

∫ dĥl
idx̂l

i
2π

dhl
idxl

i
2π

∫
dŝl

i dsl
i eι(X l

i )
T H l

i e−
1
2 (X

l
i )

T Σl−1X l
i×

×
L,N

∏
l=0,i=1

e−ι[Ql
11(ŝ

l
i)

2+Ql
22(s

l
i)

2+Ql
12ŝl

is
l
i]e−ι(ψ̂ l

i ŝl
i+ψ l

i sl
i)×

×
L,N

∏
l,i=1

P
(

ŝl
i|ĥl

i

)
P
(

sl
i|hl

i

)
,

where we have introduced the pre-activation doublet H l
i =

[
ĥl

i hl
i

]T
. Next, we perform the

integral for X l
i to simplify
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Γ =
L

∏
l=0

∫ dQl
11dql

11
2π/N

dQl
22dql

22
2π/N

dQl
12dql

12
2π/N

eιN[Ql
11ql

11+Ql
22ql

22+Ql
12ql

12]×

×
L,N

∏
l,i=1

∫
dĥl

idhl
i

∫
dŝl

i dsl
i e−

1
2 (H

l
i )

T Σ
−1
l−1H l

i×

×
L,Nl

∏
l=0,i

e−ι[Ql
11(ŝ

l
i)

2+Ql
22(s

l
i)

2+Ql
12ŝl

is
l
i+ψ̂ l

i ŝl
i+ψ l

i sl
i]×

×
L,N

∏
l,i=1

P
(

ŝl
i|ĥl

i

)
P
(

sl
i|hl

i

)
.

Now, the activations and pre-activations are the same for every neuron in each layer. Therefore,
we can re-write the above expression in a site-independent form

Γ =
L

∏
l=0

∫ dQl
11dql

11
2π/N

dQl
22dql

22
2π/N

dQl
12dql

12
2π/N

eιN[Ql
11ql

11+Ql
22ql

22+Ql
12ql

12]×

×

{
L

∏
l=1

∫
dĥldhl

∫
dŝl dsl e−

1
2 (H

l)T Σ
−1
l−1H l

×

×
L

∏
l=0

e−ι[Ql
11(ŝ

l
i)

2+Ql
22(s

l
i)

2+Ql
12ŝl

is
l
i+ψ̂ l ŝl+ψ lsl]}N×

×
L

∏
l=1

P
(

ŝl|ĥl
i

)
P
(

sl|hl
i

)
.

We re-write the above expression as

Γ =
L

∏
l=0

∫ dQl
11dql

11
2π/N

dQl
22dql

22
2π/N

dQl
12dql

12
2π/N

eNΨ[ql
11,Q

l
11,q

l
22,Q

l
22,q

l
12,Q

l
12] ,

where the rate function Ψ is given by
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Ψ[ql
11,Q

l
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l
22,Q

l
22,q

l
12,Q

l
12] = ι

L

∑
l=0

(
Ql

11ql
11 +Ql

22ql
22 +Ql

12ql
12

)
+log

∫
dĥldhl

L

∏
l=1

M[ŝl,sl, ĥl,hl],

where M[...] has the form

M[ŝl,sl, ĥl,hl] =
L

∏
l=0

e−ι[Ql
11(ŝ

l)2+Ql
22(s

l)2+Ql
12(ŝ

lsl)+ψ̂ l ŝl+ψ lsl]×

×
L

∏
l=1

P
(

ŝl|ĥl
)

P
(

sl|hl
)

e−
1
2 (H

l)T Σ
−1
l−1H l

.

In the limit N → ∞, Γ is dominated by the saddle point of Ψ[...], obtained by setting ∂Ψ

∂ql =
∂Ψ

∂Ql = 0 for both length and overlap. The conjugate variables vanish at the saddle point

Ql
1 = Ql

22 = Ql
12 = 0 ∀l.

This yields the mean-field equations

ql
11 =

1
β
+
∫

dĥldhl
(

φ(ĥl)
)2 e−

1
2 (H

l)T Σ
−1
l−1H l√

(2π)2|Σl−1|

ql
22 =

1
β
+
∫

dĥldhl
(

φ(hl)
)2 e−

1
2 (H

l)T Σ
−1
l−1H l√

(2π)2|Σl−1|

ql
12 =

∫
dĥldhl

φ(ĥl)φ(hl)
e−

1
2 (H

l)T Σ
−1
l−1H l√

(2π)2|Σl−1|
.

The above equation describes how the signal propagates through a deep neural network when
a perturbation of η l is applied at layer l. Next, we consider the noiseless limit β → ∞
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ql
11 =

∫
dĥldhl

(
φ(ĥl)

)2 e−
1
2 (H

l)T Σ
−1
l−1H l√

(2π)2|Σl−1|

ql
22 =

∫
dĥldhl

(
φ(hl)

)2 e−
1
2 (H

l)T Σ
−1
l−1H l√

(2π)2|Σl−1|

ql
12 =

∫
dĥldhl

φ(ĥl)φ(hl)
e−

1
2 (H

l)T Σ
−1
l−1H l√

(2π)2|Σl−1|
.

We can re-write the above equations in the form that resembles Eqn. 2.2. The length map V̂ is
given by

ql
s(x) = V̂

(
ql−1

s (x) | σ2
w,σ

2
b ,η

l
)
=
∫

Dz φ

(√
σ2

wql−1
s (x)+σ2

b z
)2

,

and the correlation map Ĉ under the assumption ql
11,q

l
22→ q∗ is given by

ql
s(x1,x2) = Ĉ

(
cl−1

s (x1,x2),ql−1
s (x1),ql−1

s (x2) | σ2
w,σ

2
b ,η

l
)
=
∫

Dz1Dz2 φ(u1)φ(u2)

u1 =
√

σ2
wql−1

h (x1)+σ2
b z1, u2 =

√
σ2

wql−1
h (x2)+σ2

b

[
ĉl−1

s (x1,x2)z1 +

√
1− (ĉl−1

s (x1,x2))2z2

]
.

Here ĉl−1
s (x1,x2) is

ĉl−1
s (x1,x2) =

√
1− (η l)2 σ2

wql
12 +σ2

b

σ2
wq∗+σ2

b

We observe that c∗s (x1,x2) = 1 is not the fixed point of the recursive map unless η l = 0. There-
fore, perturbations applied to a deep neural network destroy the fixed point c∗s (x1,x2) = 1. Note
that similar results are observed by Ref. [40]. It is easy to see that the limit η → 0 gives Eqn. 2.2,
relating the covariance matrix of the activations to the pre-activations
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Σl =

[
σ2

wql
s(x1)+σ2

b σ2
wql

s(x1,x2)+σ2
b

σ2
wql

s(x1,x2)+σ2
b σ2

wql
s(x2)+σ2

b

]
=

[
ql

h(x1) ql
h(x1,x2)

ql
h(x1,x2) ql

h(x2)

]
.

2.3 Training tasks

Figure 2.3: Teacher-student setup: An untrained teacher network f :RN0→RNL is used to generate
a training set T = {x, f (x)}, where x ∈N (0,1). A student network g : RN0 →RNL is trained over
the training set T to minimize the difference | f −g|.

This section describes various tasks used to analyze the training dynamics and performance of deep
neural networks with different initialization schemes. We consider two types of tasks —randomly
generated functions and real datasets.

First, we consider a variant of teacher-student setup [54], which helps understand the training
dynamics without dealing with the complexities of the data structure in real datasets, and allows
us to average over the training dataset. We consider a teacher neural network f : RN0 → RNL with
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untrained fixed parameters to generate a training dataset T = {x, f (x)}, where the input signals
x are drawn from standard normal distribution N (0,1). Next, we train a student network (not
necessarily of the same size) over this training dataset to approximate this teacher function f .
Let’s denote this approximation by g : RN0 → RNL . The student network parameters are optimized
to minimize the difference between the teacher and student functions | f − g|. This procedure is
pictorially shown in Figure 2.3.

We consider an L = 10 layered student neural network with N = 100 neurons in each layer
with a mean-squared loss and SGD/Adam optimizer, trained by data generated by teacher networks
described below using 105 input signals drawn from the standard normal distribution. We consider
three different tasks with varying complexities.

1. A standard teacher task, in which the training data is generated by a ReLU network of the
same size as the student network, initialized using He initialization.

2. Next, we consider a simple teacher network with capacity (size) much lower than the student
network. In many real data sets, the high-dimensional inputs lie in a low-dimensional man-
ifold [55], indicating low complexity of data. This motivates us to consider an easy teacher
task. We consider a single-layer ReLU network with only N = 10 neurons, initialized with
He initialization.

3. Lastly, we consider a complex teacher task, in which the complexity of the teacher network
is more than the student network. We consider a teacher network with tanh activation of the
same size as the student initialized in the chaotic regime [38], (σ2

w,σ
2
b ) = (1.5,0) (For ReLU

networks initialized with symmetric distributions, half of the neurons are dead. Thus, the
effective capacity of a ReLU network is half its size).

The various teacher tasks are summarized in Table 2.1. We implement neural networks in
Tensorflow (version 2.2.0) [56] and train them with a mean squared error loss with a mini-batch
size of 1000 and default parameters for the optimizers.
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Task size of teacher network activation (σ2
w,σ

2
b )

standard task same as student network ReLU (2, 0)

simple task single hidden layer with 10 neurons ReLU (2, 0)

complex task same as student network tanh (1.5, 0)

Table 2.1: Three tasks used to probe the training dynamics and performance of different initializa-
tion schemes.

Lastly, we also verify our results on two image classification datasets. First, the MNIST dataset,
it contains |T | = 60,000 handwritten digit images for training and 10,000 for testing. It is an
overused and straightforward training task, for which we can quickly achieve 98% classification
accuracy. Therefore, we also consider the Fashion MNIST dataset, which contains |T |= 60,000
fashionwear images for training and 10,000 for testing. It is a slightly complex task, for which we
can achieve reasonable accuracy even with feed-forward neural networks. For the real datasets, we
train neural networks with categorial cross entropy loss with a mini-batch size of 600. This choice
of mini-batch size ensures that the number of steps in each epoch is the same for the teacher-student
and image classification tasks.

We consider an L = 10 layered neural network with N = 100 neurons in each layer (except first
and last layer which are restricted by input and output size) with a cross entropy loss

Cross entropy = − 1
|T |

|T |

∑
i∈T

classes

∑
c

ŝL
i,c log( f (sL

i,c)),

where ŝL
i,c f (sL

i,c) are the desired and output probability for the class c and input i. We train the
networks using SGD and Adam optimizer, and validate our output using the classification accuracy
metric

Classification accuracy =
Number of correct predictions
Total number of predictions

.
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Chapter 3

Results

3.1 Mean-field analysis of signal propagation with correlated
weights

In this section, we provide a mean-field analysis complementary to that of ReLU networks with
anti-correlated weights. Unlike Ref. [43, 44], which studies perturbation around a ReLU network,
our analysis aims to understand the critical properties of correlations between input signals. We
consider correlations within the set of weights (wl

i ) incoming to each neuron i, with all neurons
identically distributed. The correlated Gaussian distribution is

P(wl
1,w

l
2,w

l
3 . . .) =

Nl

∏
i

exp
(
−1

2(w
l
i)

T A−1wl
i
)√

(2π)Nl−1|A|
, (3.1)

with a covariance matrix given by

A =
σ2

w
Nl−1

(
I− k

1+ k
J

Nl−1

)
.

Here I is the identity matrix, J is an all-ones matrix, and k parameterizes the correlation
strength. Positively correlated and anti-correlated regimes correspond to the regions −1 < k < 0
and k > 0, respectively, which correspond to the off-diagonal elements of A being positive and
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negative. Note that weights reaching two different nodes are uncorrelated, and also the bias is
uncorrelated with the weights.

We follow the same approach discussed in Section 2.1 to derive the length and correlation
maps for ReLU networks with correlated weights given by Eqn. 3.1. Assuming self-averaging,
we obtain the average value of the length of a signal, x, reaching layer l by considering an average
over weights and biases as

ql
h(x) =

1
Nl

〈
Nl

∑
i=1

(hl
i(x))

2

〉
=

1
Nl

Nl

∑
i=1

Nl−1

∑
j,m=1

〈
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i jw
l
im

〉
φ(hl−1

j (x))φ(hl−1
m (x))+

〈
(bl

i)
2
〉

=
σ2

w
Nl−1

Nl−1

∑
j,m=1

(
δ j,m−

k
1+ k

1
Nl−1

)
φ(hl−1

j (x))φ(hl−1
m (x))+σ

2
b ,

where we have used
〈

wl
i jw

l
im

〉
=

σ2
w

Nl−1

(
δ j,m− k

1+k
1

Nl−1

)
and

〈
(bl

i)
2〉= σ2

b . For large Nl−2, each

hl−1
i (x) is a weighted sum of a large number of correlated random variables, which converges to a

zero-mean Gaussian with a variance ql−1
h (x) (by the definition of ql−1

h (x)). Replacing the average
over all neurons at layer l−1 by a Gaussian distribution, we get

ql
h(x) = σ

2
w

∫
Dz φ

(√
ql−1

h (x) z
)2

−σ
2
w

k
1+ k

[∫
Dz φ

(√
ql−1

h (x) z
)]2

+σ
2
b . (3.2)

For the second term in Eqn. 3.2, we have used the fact that for m 6= j, hl
j(x) and hl

m(x) are un-
correlated random variables and ignored O(1/N) terms. Note that weights reaching two different
nodes are uncorrelated. We can write Eqn. 3.2 in terms of the length map V from Eqn. 2.2 to get

ql
h(x) = V (ql−1

h (x)|σ2
w,σ

2
b )−σ

2
w

k
1+ k

[∫
Dz φ

(√
ql−1

h (x) z
)]2

.

For a ReLU activation, we can perform the integrals to get the exact form of the recursive
relation between ql

h(x) and ql−1
h (x) to be
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ql
h(x) =

σ2
wql−1

h (x)
2

(
1− k

1+ k
1
π

)
+σ

2
b . (3.3)

The length is bounded if σ2
w < 2/

(
1− k

1+k
1
π

)
. Thus, the boundary separating the ‘bounded’ and

‘unbounded’ phase shifts depending on the correlation strength. The boundary moves downward
from that in the k = 0 case (see Fig. 2.1b) when the weights are positively correlated. In contrast,
the boundary shifts upwards for anti-correlated weights.

The covariance map can be derived similarly by considering an average over the weights and
biases

ql
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and then replacing the sum over neurons in the previous layer with an integral with a Gaus-
sian measure. For large Nl−2, the joint distribution of hl−1

j (x1) and hl−1
k (x2) will converge to a

two-dimensional Gaussian distribution with a covariance ql−1
h (x1,x2). Propagating this joint dis-

tribution across one layer, we obtain the iterative map

ql
h(x1,x2) = σ

2
w

∫
Dz1Dz2φ(u1)φ(u2)−σ

2
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k
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√
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h (x1)z1, u2 =

√
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h (x2)

[
cl−1

h (x1,x2) z1 +
√

1− (cl−1
h (x1,x2))2 z2

]
,

(3.4)

where cl
h(x1,x2) = ql

h(x1,x2)/
√

ql
h(x1)ql

h(x2) is the correlation coefficient, and Dz1,Dz2 are
standard normal Gaussian distributions. Again, in the second part of Eqn. 3.4, we have used the
fact that for k 6= j, hl

j(x1) and hl
k(x2) are uncorrelated random variables and have ignored O(1/N)

terms. We can further write Eqn. 3.4 in terms of the correlation map C from Eqn. 2.2 to get
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Further, we can perform the integrals in the second part of the above equation to get

ql
h(x1,x2) = C

(
cl−1

h (x1,x2),ql−1
h (x1),ql−1

h (x2) | σ2
w,σ

2
b

)
− σ2

w
2

k
k+1

1
π

√
ql−1

h (x1)ql−1
h (x2).

As in Section 2.1, we analyze the critical properties of the correlation coefficient under the
assumption that the signal length has reached a fixed point. Under this assumption, the above
equation simplifies to

ql
h(x1,x2) = C

(
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h (x1,x2),q∗h(x) | σ2
w,σ

2
b

)
− σ2

w
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π

.

By dividing the covariance by q∗h(x), we obtain the recursive map for the correlation coefficient

cl
h(x1,x2) =

C
(

cl−1
h (x1,x2),q∗h(x)

)
q∗h(x)

− σ2
w

2
k

k+1
1
π
. (3.5)

It is easy to see that c∗h(x1,x2) = 1 is always a fixed point. Next, we determine the stability

of the fixed point c∗h(x1,x2) = 1 by calculating ∂cl
h(x1,x2)

∂cl−1
h (x1,x2)

evaluated at the fixed point. The fixed
point’s stability depends only on the covariance map C , and is given by

χ1 =
∂cl

h(x1,x2)

∂cl−1
h (x1,x2)

∣∣∣
cl−1

h (x1,x2)=1
= σ

2
w

∫
Dz [φ ′(

√
q∗(x) z)]2 =

σ2
w

2
.

Equating the above equation to one, we obtain the phase transition boundary at σ2
w = 2. Note

that the condition for the phase transition turns out to be the same for ReLU networks with uncor-
related weights. However, for uncorrelated weights, the condition is invalid as ql

h(x) diverges for
σ2

w > 2.
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(a) (b)

Figure 3.1: Phase diagram for ReLU networks with correlated Gaussian weights. (a) ReLU net-
works with positively correlated weights have two phases. It has, a ‘bounded’ phase where q∗(x)
is finite, and an ‘unbounded’ in which it diverges. The phase boundary shifts downwards relative
to 2.1b. In both phases, any two signals will eventually become correlated (b) ReLU networks
with anti-correlated weights have three phases. In addition to the phase boundary for the length (at
some σ2

w > 2), a phase transition exists for the correlation coefficient. at σ2
w = 2.

In summary, the phase transition boundary for the length shifts depending on the correlation
type, whereas the transition boundary for the correlation coefficient remains the same. The length’s
fixed point boundary shifts downwards for the positively correlated weights, resulting in similar
phase diagram for uncorrelated weights (see Fig. 3.1a). Similar to ReLU networks with uncorre-
lated weights, we find that it does not have a chaotic phase in the unbounded phase. In contrast, an
interesting situation occurs for the anti-correlated weights. The transition boundary for the length
shifts upwards, creating an opportunity for a ‘chaotic’ phase (see Fig. 3.1b). Such a ReLU network
has three phases. First, an ‘ordered bounded’ phase, where the length has a finite fixed point and
correlations converge to one. Second an ‘chaotic bounded’ phase where the length still reaches a
finite fixed point, but the correlations do not converge to one. Lastly, a ‘chaotic unbounded’ phase,
where the length of the signal diverges. We demonstrate these results numerically in Fig. 3.2 for
a correlation strength of k = 100. As predicted by the above equations, the stability of the fixed
point c∗h(x1,x2) = 1 changes at σ2

w = 2, and the length diverges for a higher value of σ2
w. Therefore,

the numerical experiments clearly validate the mean-field analysis.
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Figure 3.2: The above plots show the length and correlation coefficient of the signals after it has
propagated through l layers in a ReLU network with anti-correlated weights. We calculate the
length and the correlation coefficient for M = 1024 input signals, averaged over 40 networks with
N = 2048 neurons in each layer. The dashed lines indicate the theoretical phase boundaries at
σ2

w = 2.92 and σ2
w = 2.0 for the length and correlation coefficient. The solid black line in the first

panel denotes the theoretical prediction for the length’s fixed point. As in Fig. 2.2, the apparent
crossing point before σ2

w = 2.92 is due to finite bias. As the critical boundaries do not depend on
the variance of bias, we show results just for σ2

b = 0.1.

In conclusion, a ReLU network with anti-correlated weights can be more expressive by tak-
ing advantage of a chaotic phase, and it may be beneficial for a ReLU network to remain in this
subspace. Thus, we propose initializing ReLU networks with anti-correlated weights at the phase
transition boundary of the correlation coefficient (σ2

w,σ
2
b ) = (2,0). We call it Anti-Correlated Ini-

tialization (ACI). Section 3.2 shows numerical results for the training dynamics and performance
of ReLU networks initialized with ACI for various tasks described in Section 2.3.

3.2 Training with Anti-Correlated Initialization

This section shows the training dynamics and performance of ReLU networks initialized with dif-
ferent weight correlation strength k on tasks described in Section 2.3. We choose three different
correlation strengths; k = 100 induces anti-correlated weights, k = −0.5 produces positively cor-
related weights, and lastly, k = 0 corresponds to uncorrelated weights (He initialization). We train
networks with two different optimization algorithms, SGD and Adam. For SGD, we train for 104
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epochs, and for Adam, we train for 103 epochs.

3.2.1 Standard teacher task

Fig. 3.3a and 3.3b show the average validation loss for different correlation strengths trained using
SGD and Adam algorithms. We observe that ReLU networks initialized with ACI (k = 100) train
faster than He initialization (k = 0). In contrast, ReLU networks with positively correlated weights
(k =−0.5) train even slower than He initialization.

(a) SGD optimizer (b) Adam optimizer

Figure 3.3: Average validation loss of 100 ReLU networks trained on the standard teacher task for
different weight correlation strengths.

3.2.2 Simple teacher task

Fig. 3.4a and 3.4b show the average validation loss for the simple teacher task. We observe similar
qualitative results as in the standard teacher task. For SGD, we observe an initial linear region in
which all initialization schemes perform equally.
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(a) SGD optimizer (b) Adam optimizer

Figure 3.4: Average validation loss of 100 ReLU networks trained on the simple teacher task for
different weight correlation strengths.

3.2.3 Complex teacher task

Fig. 3.5a and 3.5b show the average validation loss for a complex teacher task. For some inter-
mediate regions, ACI performs worse than other initializations on training with SGD. The regions
where ACI performs poorly shift depending on the complexity of the task.

(a) SGD optimizer (b) Adam optimizer

Figure 3.5: Average validation loss of 100 ReLU networks trained on the complex teacher task for
different weight correlation strengths.

In summary, ACI shows a definite advantage over He-initialization for most of the tasks. An
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exception is the complex task trained with SGD, where it shows comparable performance. Many
alternatives are proposed to improve ReLU networks [24, 22, 25]. Of particular interest is Random
Asymmetric Initialization (RAI), which replaces one of the weight/biases incoming to a neuron
with a random variable drawn from a beta distribution to reduce the dead node probability. In
the next section, begin by analyzing the correlation properties of RAI. We find that it only has an
ordered phase as ReLU networks with uncorrelated weights. Therefore, there exists a possibility
of inducing a chaotic phase using anti-correlated weights. Finally, we combine it with ACI to pro-
pose a new initialization scheme RAAI, which performs better than the best-known initialization
schemes for ReLU networks.

3.3 Random Asymmetric Anti-correlated Initialization

This section explores a strategy of combining RAI (introduced by Ref. [22]) and ACI. We call
this combined initialization Random Asymmetric Anti-correlated Initialization (RAAI). Before we
begin, we analyze critical properties of RAI and show that similar to uncorrelated initialization RAI
also has an ordered phase only. Therefore, there exists a possibility of obtaining a chaotic phase
using anti-correlated weights. Finally, we describe RAAI and analyze its correlation properties. We
find that similar to ACI, RAAI also has a chaotic phase which can be used to increase expressivity.

3.3.1 Random Asymmetric Initialization

We begin by analyzing critical properties of Random Asymmetric Initialization (RAI) proposed by
Ref. [22] to reduce dead node probability. For ReLU networks with symmetric distributions (like
Gaussian distributions with zero mean) for weights and biases, the probability of a dead node is half
as ReLU outputs zero for negative inputs. RAI reduces the dead node probability by initializing
one of the weights or bias incoming to the neuron by a distribution with positive support (like the
beta distribution), resulting in a positive mean for the pre-activations. Note that any of the weights
or the bias is randomly replaced. Thus, the weights and bias are treated on an equal footing. To
simplify the notations, we incorporate the bias in the weight matrix by introducing a fictitious
additional node with a constant value of 1, i.e.,
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sl(x) = [1, φ(hl(x))].

Ref. [22] propose to initialize RAI with a variance of σ2
w = 0.36 to ensure that the signal’s

length is bounded. However, the proposed variance does not represent the phase transition bound-
ary for length, as in He initialization, and lies inside the bounded regime. This is because the fixed
point stability condition is rather involved. In Appendix B.1, we estimate the transition boundary
for the length under mean-field approximations. We found that the length has a finite non-zero
fixed point if σ2

w < 0.56.

Similar to the analysis in Section 2.1, we analyze the correlation properties of RAI and found
that cl

h(x1,x2) = 1 is always a fixed point of the recursive map (see Appendix A.2). Finding the
stability of the fixed point c∗h(x1,x2) = 1, even with the mean-field assumptions is difficult, and
we again obtain it approximately. In Appendix B.2, we estimate the transition boundary for the
correlation coefficient under the mean-field approximations. Assuming q∗(x) is finite, we show that
ReLU networks with RAI do not have a chaotic phase, and any two signals propagating through a
ReLU network become asymptotically correlated for all values of σ2

w. In other words, c∗(x1,x2) =
1 is always a stable fixed point in the regime where signal strength is bounded. However, numerical
results presented below indicate that the fixed point remains stable even in the unbounded phase.
Note that we obtained similar results for ReLU networks initialized with uncorrelated Gaussian
weights.

In Fig. 3.6, we show the numerical results for the fixed points of length and correlation co-
efficient. This suggests that the length remains finite for σ2

w up to 0.72 (first panel), and the
c∗h(x1,x2) = 1 is always a stable fixed point of the recursive map (second panel). Thus, the ap-
proximated results underestimate the length’s critical point but correctly predict the stability of the
correlation coefficient.
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Figure 3.6: The above plots show the length and the correlation coefficient of the signals after
propagating through l layers in a ReLU network initialized with RAI. We calculate the length and
the correlation coefficient for M = 1024 input signals, averaged over 40 networks with N = 2048
neurons in each layer.

RAI focuses on decreasing the dead node probability to increase expressive power, whereas
ACI uses anti-correlated weights to improve the expressivity. As RAI and ACI increase the ex-
pressivity of a ReLU network using different mechanisms, we explore the possibility of combining
the two. We call it Random Anti-correlated Asymmetric Initialization (RAAI). In the following
section, we describe RAAI and analyze its correlation properties.

3.3.2 Random Asymmetric Anti-correlated Initialization

To prepare weights drawn from RAAI, we take anti-correlated weights and biases incoming to a
neuron (like Eqn. 3.1) and replace a randomly picked weight/bias with a random variable drawn
from a beta distribution. Note that the weights incoming to different neurons are uncorrelated.
Like ACI, we expect three phases, and we do observe the same in an approximate analysis of
RAAI (see Appendix C). We find that the length diverges when σ2

w > 1.75, whereas the fixed point
c∗(x1,x2) = 1 becomes unstable at σ2

w = 1.41. This again opens a possibility for a chaotic phase.
We numerically verify these results in Fig. 3.7. We find that the length diverges for σ2

w > 1.2,
whereas the correlation’s fixed point is around σ2

w = 0.9. The numerical results qualitatively agree
with our analysis, although the approximation in the analysis leads to an overestimation of the
phase boundaries.
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Figure 3.7: The above plots show length and the correlation coefficient of the signals after it has
propagated through l layers in a ReLU network initialized with RAAI. We calculate the length and
the correlation coefficient for M = 1024 input signals, averaged over 40 networks with N = 2048
neurons in each layer.

RAAI has a chaotic phase like ACI and a lower dead node probability like RAI. Thus, we
expect RAAI to be a strong candidate for initializing ReLU networks. In Table 3.1, we summarize
and compare different initialization schemes. For ACI, RAI, and RAAI, we scanned through the
nearby parameter space to assure optimality of these parameters. In the next section, we analyze
the training dynamics and performance of RAAI and compare it with other initialization schemes.

Initialization σ2
w σ2

b k Chaotic Dead node
scheme phase probability

He 2.0 0.0 0.0 No 0.5

ACI 2.0 0.0 100.0 Yes 0.5

RAI 0.36 0.36 0.0 No 0.36

RAAI 0.90 0.90 100.0 Yes 0.36

Table 3.1: Comparison between different initialization schemes for ReLU networks. RAI and
RAAI both have a lower dead node probability than the other two symmetric initializations. ACI
and RAAI have a chaotic phase, whereas the other two do not. Thus, RAAI has both a chaotic
phase and a lower dead node probability. The dead node probabilities are calculated numerically
for input signals drawn from the standard normal distribution.
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3.4 Training with Random Asymmetric Anti-correlated Initial-
ization

This section compares the performance of RAAI with other initialization schemes listed in Table
3.1 on tasks described in Section 2.3.

3.4.1 Standard teacher task

Fig. 3.8a and 3.8b show the average validation loss for different initialization schemes described in
Table 3.1 trained using SGD and Adam algorithms. We observe that RAAI performs on par with
or better than all other initialization schemes, whereas the relative performance of RAI and ACI
depends on the optimization algorithm.

(a) SGD optimizer (b) Adam optimizer

Figure 3.8: Average validation loss for ReLU networks trained on the standard teacher task for
different initialization schemes.

3.4.2 Simple teacher task

Fig. 3.9a and 3.9b show the average validation loss for the simple teacher task for different initial-
ization schemes. Similar to the standard teacher task, RAAI performs better than or on par with
other initialization schemes. In between RAI and ACI, the former performs better on using either
optimizer.
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(a) SGD optimizer (b) Adam optimizer

Figure 3.9: Average validation loss for ReLU networks trained on the simple teacher task for
different initialization schemes.

3.4.3 Complex teacher task

Fig. 3.10a and 3.10b show the average validation loss for a complex teacher task. Again, RAAI
performs better than or on par with all other initialization schemes.

(a) SGD optimizer (b) Adam optimizer

Figure 3.10: Average validation loss for ReLU networks trained on the complex teacher task for
different initialization schemes.

It may be of concern that initialization in an expressive subspace of weights might lead to
overfitting. We trained a neural network with L = 20 layers and found that ACI starts to overfit,
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but this can be avoided by reducing the value of the correlation strength k. This leads to another
parameter to be tuned. On the other hand, RAAI does not show any overfitting signs and performs
consistently better than other initialization schemes on training deeper networks. We believe that
overfitting in ACI is related to correlations vanishing to zero at high variance (see Fig. 3.2). In
contrast, for RAAI, correlations do not vanish to zero at high variance (see Fig. 3.7).

3.4.4 MNIST task

Fig. 3.11a and 3.11b show the average validation loss for the MNIST task. Again, RAAI performs
better than all other initialization schemes, whereas, RAI trains slower even than He initialization.

(a) SGD optimizer (b) Adam optimizer

Figure 3.11: Average validation accuracy of 10 ReLU networks trained on the MNIST task for
different initialization schemes.

3.4.5 Fashion-MNIST task

Fig. 3.12a and 3.12b show the average validation loss for the Fashion-MNIST task. RAAI performs
better than all other initialization schemes, whereas, RAI trains slower even than He initialization.
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(a) SGD optimizer (b) Adam optimizer

Figure 3.12: Average validation accuracy of 10 ReLU networks trained on the Fashion-MNIST
task for different initialization schemes.
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Chapter 4

Discussion and conclusion

This chapter begins by discussing various questions raised in Sections 1.1 and 1.2 regarding the
expressivity of deep neural networks. Next, we discuss the implications and limitations of the new
results presented in this thesis. Lastly, we provide an outlook on a few open problems of deep
neural networks.

Implications of the mean-field analysis on the expressivity of deep neural net-
works

This section discusses the implication of the mean-field analysis on the expressivity of deep neural
networks. In particular, we discuss if a deeper network always helps solve a more complex problem
and why the phase transition boundary corresponds to the optimal information flow.

Is a deeper network always better? This question is often raised, and practitioners always try to
train deeper networks to solve complex problems. However, the mean-field theory of signal prop-
agation suggests that the expressivity of a deep network increases/decreases as depth depending
on the chaotic/ordered phase. In an ordered phase, two signals become asymptotically correlated;
thus, the expressivity decreases as a function of depth. In contrast, two signals become increasingly
different if the correlation coefficient’s fixed point is zero; therefore, the expressivity increases as
depth. Therefore, increasing the depth of a network does not necessarily help in solving complex
problems.
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The mean-field analysis allows us to find optimal conditions for information flow through the
network. Both the ordered and the chaotic phase modify the correlations between the input signals.
If this modification is too drastic, it might lead to training failure. For example, consider a cat
vs. dog image classification task. A network may find it difficult to differentiate between a cat
and a dog image in an ordered phase, whereas it may face difficulties in keeping two cat images
in the same class in a chaotic phase. However, the depth scale ξ−1

c = − log χ1 corresponding
to the asymptotic expansion, |cl

h(x1,x2)− 1| ∼ e−l/ξc , diverges at the phase transition boundary
as χ1 → 1, and the input correlations sustain for an extended depth. Thus, the phase transition
boundary parameters correspond to optimal information flow through the network. Note that these
problems occur only in deep neural networks.

Implications and limitations of the new results

In this work, we analyzed the evolution of correlation between signals propagating through a ReLU
network with correlated weights using the mean-field theory of signal propagation. Multiple stud-
ies show that ReLU networks with uncorrelated weights are biased towards computing simpler
functions, but ReLU networks do perform complex tasks in practice. Unlike ReLU networks with
uncorrelated weights, ReLU networks with anti-correlated weights reaching a node have a chaotic
phase where correlation saturates below unity. This suggests that such networks can exhibit higher
expressivity. Although we have focused on the ReLU networks in this study, anti-correlation in
weights may be helpful in general. Networks with other non-linear activation functions like tanh,
SELU, and sigmoid have a chaotic phase even with uncorrelated weights. Nevertheless, the weight
correlations in them may still help to tune the phase boundaries and expressivity of the networks.

We further investigated the possibility that ReLU networks with the enhanced expressivity may
prove beneficial in faster learning. Comparison of training and test performance of networks in a
range of teacher-student setups clearly showed that networks with anti-correlated weights learn
faster. While ACI shows better learning performance in general, it shows poor performance with
SGD during an intermediate learning stage when the teacher network has a relatively higher ex-
pressivity. We believe that this may be due to the system getting stuck in local minima. This
is consistent with the absence of a similar regime on training with Adam optimizer. On train-
ing deeper networks with ACI, we found that it overfits, but this can be avoided by fine-tuning
correlation strength k.
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As anti-correlated weights exhibit faster training for ReLU networks, we explored a strategy of
favoring anti-correlation in the training procedure. We investigated improvement in training time
from a regularization term in the loss function that favors anti-correlated weights. However, our
attempts did not show any systematic results.

We compared ACI with a recently proposed initialization scheme called RAI, which introduces
a systematic asymmetry (around the mean) in the weights to decrease node probability. We find that
the relative performance between RAI and ACI depends on the task and the optimization algorithm.
RAI improves expressivity by reducing the dead node probability, whereas ACI achieves the same
by inducing a chaotic phase. As RAI and ACI rely on different mechanisms, we explored a strategy
of combining the two initialization schemes. We analyzed the correlation properties of RAAI and
found that it has a chaotic phase like ACI. We demonstrated that RAAI leads to faster training and
learning than the best-known methods on various teacher tasks and image classification tasks. For
different initialization schemes, the behavior of the training dynamics at large epochs may depend
on the optimizer and training data. However, RAAI shows a definite advantage over other schemes
when using the SGD optimizer, especially in early training epochs. In addition to faster training,
RAAI also shows no sign of overfitting and improves on the simpler strategy that relies only on
anti-correlations.

Further work and outlook

In this thesis, we focused on the evolution of correlations between signals propagating through
infinitely wide neural networks. In practice, neural networks can only be finite. Therefore, one
following problem is to study the effect of finite width and depth. Ref. [44] studied large deviations
to weight perturbations applied to deep neural networks. However, there are no studies on the phase
diagram of signal propagation in deep neural networks with finite width and depth.

We also completely ignored analyzing the training dynamics in this study. Ref. [57] observed
that the weights of a wide network do not change significantly after training. In this lazy regime,
the evolution of the output function of a wide network can be approximated by Taylor series anal-
ysis. This approximation is called Neural Tangent Kernel. Under this limit, a neural network can
be approximated as an evolving Gaussian kernel, and the continuous version of gradient descent
finds parameters corresponding to zero training loss. We would consider extending this analysis
for ReLU networks with correlated weights to find theoretical evidence for faster training with
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ACI. Other open problems regarding the training dynamics include the theoretical analysis of the
learning rate, the mini-batch procedure, regularization procedures like dropout, and atypical loss
functions and optimizers, to name a few.

(a) A convolutional neural network a

(b) A graph neural network b

ahttps://towardsdatascience.com/a-comprehensive-guide-to-
convolutional-neural-networks-the-eli5-way-3bd2b1164a53

bhttps://tkipf.github.io/graph-convolutional-networks/

(c) A transformer a

ahttps://medium.com/inside-machine-
learning/what-is-a-transformer-d07dd1fbec04

Figure 4.1: Some recently introduced architectures.

In the last few years, several new architectures and new learning rules have been proposed,
which have replaced feed-forward networks in the supervised learning setting. Architectures like
Convolutional Neural Networks [11], Graph Neural Networks [58], and Transformers [59] (see
Figure 4.1) provide a significant advantage over feed-forward networks. However, these models
have complex architectures and are challenging to interpret. The mean-field formalism can still
be applied to convolutional neural networks and graph neural networks under simplified settings
(for example, see Ref. [60]). In contrast, the theoretical analysis of the expressivity of recent
architectures like Transformers is still an open question. Moreover, feed-forward neural networks
are part of many of these complex architectures. Therefore, it is still relevant to study feed-forward
neural networks to have a conceptual understanding of these complex architectures.

50



The machine learning community is presently moving away from the supervised learning setup
because the training loss observed in supervised learning provides no information about the gen-
eralization error. Neural networks can achieve zero training loss even on random labels when the
testing loss can still be considerably large. New learning rules under the name of self-supervised
learning are introduced, which can avoid this fate. However, a one-for-all learning rule is still not
developed. Nevertheless, the new learning rules still use neural networks, and questions about the
expressivity of neural networks remain relevant, and we hope that this study will continue to be
applicable in the future.
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Appendix A

Derivation of the length and covariance
map for RAI

To obtain weights drawn from RAI distribution, we initialize the weights and bias incoming to
a node with a Gaussian distribution ∼N (0,σ2

w) and replace one weight or the bias with a beta
distribution random variable. The weights and bias are treated on an equal footing. Therefore,
to simplify the notations, we incorporate the bias in the weight matrix by introducing a fictitious
additional node with a constant value of one, i.e.,

sl(x) = [1, φ(hl(x))].

Now, the node index starts from 0 instead of 1. Furthermore, we assume that Nl = N at each
layer. The evolution equation is now given by

hl(x) = Wl · sl−1(x).

It is easier to track the evolution of correlations using the activations instead of the pre-activations
for RAI-type initializations for which the analytical form of the distribution is unknown. So, we
define a couple of covariance matrices over activations which will come in handy
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ql
s(x1,x2) =

1
N +1

N

∑
i=0

sl
i(x1)sl

i(x2)

ql
−kl

j
(x1,x2) =

1
N

N

∑
t 6=kl

j

sl
t(x1)sl

t(x2) ,

where kl
j tags variables associated with the special weight. We will use the notations ql

s(x) =

ql
s(x,x) and ql

−k(x) = ql
−k(x,x). The corresponding correlation coefficients are given by,

cl
s(x1,x2) =

ql
s(x1,x2)√

ql
s(x1) ql

s(x2)

cl
−kl

j
(x1,x2) =

ql
−kl

j
(x1,x2)√

ql
−kl

j
(x1) ql

−kl
t
(x2)

A.1 Derivation of the length map for RAI

Given hl−1(x), we can view hl
j(x) as

hl
j(x) = σw

√
ql−1
−kl−1

j
(x) z+ sl−1

kl−1
j
(x) u,

where z ∼N (0,1) and u ∼ β (2,1). By applying the activation function and squaring it, we
obtain

φ(hl
j(x))

2 = φ

(
σw

√
ql−1
−kl−1

j
(x) z+ sl−1

kl−1
j
(x) u

)2

.

Next, we take an average over the weights and the special weight to get
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〈
φ(hl

j(x))
2|hl−1(x)

〉
=

N

∑
kl−1

j =0

1
N +1

∫
dz du f (z) f (u) φ

(
σw

√
ql−1
−kl−1

j
(x) z+ sl−1

kl−1
j
(x) u

)2

,

where f (u) ∼ β (2,1) , and f (z) ∼N (0,1). Finally, we sum over all nodes and re-write the
equation in terms of the overlap

〈
ql

s(x)|hl−1(x)
〉
=

1
N +1

1+
N

∑
j=1

N

∑
kl−1

j =0

1
N +1

∫
dz du f (z) f (u) φ

(
σw

√
ql−1
−kl−1

j
(x) z+ sl−1

kl−1
j
(x) u

)2
 .

(A.1)

A.2 Derviation of the covariance map for RAI

The covariance map can be derived similarly, with a key difference of correlations between the
pre-activations incoming to the node. For two input signals x1 and x2, the covariance map reads

〈
ql

s(x1,x2)|hl−1(x1),h
l−1(x2)

〉
=

1
N +1

1+
N

∑
j=1

N

∑
kl−1

j =0

1
N +1

∫
dy1dy2du f (y1,y2) f (u)×

× φ

(
σwy1 + sl−1

kl−1
j
(x1) u

)
φ

(
σwy2 + sl−1

kl−1
j
(x2) u

)]
,

(A.2)

where f (y1,y2) is the joint Gaussian distribution of y1 and y2, with a covariance matrix given
by

Σ
l−1
kl

j
(x1,x2) =

 ql−1
−kl−1

j
(x1) ql−1

−kl−1
j
(x1,x2)

ql−1
−kl−1

j
(x1,x2) ql−1

−kl−1
j
(x2)

 .
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We can re-write Eqn. A.2 in terms of cl
−kl

j
(x1,x2)

〈
ql

s(x1,x2)|hl−1(x1),h
l−1(x2)

〉
=

1
N +1

1+∑
j

∑
kl−1

j

1
N +1

∫
dz1 dz2 du f (z1) f (z2) f (u) φ (v1)φ (v2)


v1 = σw

√
ql−1
−kl−1

j
(x1) z1 + sl−1

kl−1
j
(x1) u

v2 = σw

√
ql−1
−kl−1

j
(x2)

[
cl
−kl

j
(x1,x2)z1 +

√
1− (cl

−kl
j
(x1,x2))2 z2

]
+ sl−1

kl−1
j
(x2) u

where f (z1) ∼ f (z2) ∼ N (0,1) are standard Gaussian distributions. As suggested by Ref.
[38], we can find the fixed point of the correlation map under the assumption that the length ql

h(x)

has reached its fixed point. Under this assumption, it is easy to see that cl
h(x1,x2) = 1 is a fixed

point of the correlation map.
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Appendix B

Stability of the fixed points for the length
and correlation maps for RAI

B.1 Stability of the fixed point for the length map for RAI

The derivation of the analytical form of the length map (Eqn. A.1) is involved, and only bounds
to the map have been derived [22]. Inspired by the analytical form of the length map for the anti-
correlated initialization and the analysis done by Ref. [22], we assume that the length map has a
linear dependence on ql−1

s (x). Under this assumption, we can find the stability of the fixed point
of the length map by taking a derivative with respect to ql−1

s (x). However, another problem exists.
While taking a derivative, we have to encounter derivatives of the form

∂ sl−1
−kl−1

j
(x)

∂ql−1
s (x)

.

To simplify the calculations further, we employ a mean-field type approach by approximating
ql
−kl

j
(x) by ql

s(x) and sl
kl

j
by its RMS value

√
ql

s(x). Note that we can also approximate sl
kl

j
by its

mean value, giving the same qualitative results. This assumption simplifies Eqn. A.1 significantly,
and we obtain
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〈
ql

s(x)|hl−1(x)
〉
=

1
N +1

[
1+(N +1)

∫
dz du f (z) f (u) φ

(√
ql−1

s (x)(σwz+u)
)2
]
.

To find the fixed point of the length map, we take a derivative wrt ql−1
s (x) to get the condition

for stability of the fixed point q∗(x). We denote the derivative by ζq∗(x). It separates the parameter
space into two phases - a bounded phase when ζq∗(x) < 1, and an unbounded phase when ζq∗(x) > 1.

ζq∗(x) =
∂ql

s(x)
∂ql−1

s (x)

∣∣∣
ql−1

s (x)=q∗(x)

ζq∗(x) =
∂

∂ql−1
s (x)

∫
dz du f (z) f (u) φ

(√
ql−1

s (x)(σwz+u)
)2

ζq∗(x) =
1√

ql−1
s (x)

∫
dz du f (z) f (u) (σwz+u)φ ′

(√
ql−1

s (x)(σwz+u)
)

φ

(√
ql−1

s (x)(σwz+u)
)

ζq∗(x) = σ
2
w

∫
dz du f (z) f (u)

[
φ
′ (σwz+u)

]2
+σw

∫
dz du f (z) f (u)φ ′ (σwz+u)φ (σwz+u)

(B.1)
where we have used the fact that for a > 0, φ(ax) = a φ(x). On evaluating the integral numerically,
we find that ζq∗(x) = 1 when σ2

w = 0.56. On comparing with the numerical results in Fig. 3.6, we
find that this approximated result underestimates the critical point at σ2

w = 0.72.

B.2 Stability of the fixed point for the correlation map for RAI

Under the assumption, ql
s(x)→ q∗(x), the correlation map has a fixed point c∗s (x1,x2) = 1, and its

stability can be calculated by the derivative of the correlation map evaluated at cl−1
s (x1,x2) = 1.

However, again, we get into the difficulties mentioned in the previous section, and we employ the
same assumptions to arrive at a tractable equation for the correlation map
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〈
cl

s(x1,x2)|hl−1(x1),h
l−1(x2)

〉
=

1
q∗s (x)

1
N +1

[
1+N

∫
dz1 dz2 du f (z1) f (z2) f (u)×

× φ

(√
q∗s (x)(σw z1 +u)

)
φ

(√
q∗s (x)

[
cl−1

s (x1,x2) σw z1 +

√
1− (cl−1

s (x1,x2))2 σw z2 +u
])]

.

Next, we take a derivative to get the condition for the stability of the fixed point c∗h(x1,x2) = 1

χ1 =
∂cl

h(x1,x2)

∂cl−1
h (x1,x2)

∣∣∣
cl−1

h (x1,x2)=1

χ1 =
1

q∗h(x)
∂

∂cl−1
h (x1,x2)

∫
dz1dz2du f (z1) f (z2) f (u)φ

(√
q∗s (x)(σw z1 +u)

)
×

×φ

(√
q∗s (x)

[
cl−1

s (x1,x2) σw z1 +

√
1− (cl−1

s (x1,x2))2 σw z2 +u
])∣∣∣

cl−1
h (x1,x2)=1

χ1 = σ
2
w

∫
dz du f (z) f (u)

[
φ
′(σwz+u)

]2
. (B.2)

The above equation is the same as the first term we obtained in the condition for the stability of
the length map (Eqn. B.1). Finally, we obtain a critical value of σ2

w = 1.41 by solving for χ1 = 1.
We observe that the critical point for the length is smaller than the critical point of the correlation
coefficient, and from our experience with ReLU networks with correlated weights, we expect RAI
to have an ordered phase only, which is confirmed by experimental results (see Fig. 3.6).
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Appendix C

Derivation of length and correlation map
for RAAI

C.1 Derivation for the length map for RAAI and the stability
condition

For given hl−1(x), we can view hl
j(x) as

hl
j(x) =

(
σw

√
q̃l−1(x) z+ sl−1

−kl−1
j
(x) u

)
,

where q̃l−1 = ql−1
−kl−1

j
(x)− k

1+k

(
ml−1
−kl−1

j
(x)
)2

. Here ml−1
−kl−1

j
(x) is the mean value of sl−1

−kl−1
j

aver-

aged over nodes in the previous layer. We can use the relation ml
s(x)

2 = ql
s(x)/π and re-define σw

as

σ̃
2 = σ

2
w

(
1− k

1+ k
1
π

)
,

which yields,
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hl
j(x) =

(
σ̃

√
ql−1

s (x) z+ sl−1
−kl−1

j
(x) u

)
,

Now, the entire analysis goes through as Section B.1, just with a re-definition of the variance.
Now, we can read off the stability condition for the fixed point of the length map

ζq∗(x) = σ̃
2
w

∫
dz du f (z) f (u)

[
φ
′ (σ̃z+u)

]2
+ σ̃

∫
dz du f (z) f (u)φ ′ (σ̃z+u)φ (σ̃z+u) (C.1)

On solving the equations numerically, we observe that the length is bounded when σ2
w < 1.75,

which overestimates the numerical value observed in experiments (see Fig. 3.7).

C.2 Derivation for the correlation map for RAAI and the sta-
bility condition

The derivation for the correlation map for RAAI can be done similar to RAI, with a key difference
of the covariance matrix. The covariance matrix is given by

Σ
l−1
kl

j
(x1,x2)=


ql−1
−kl−1

j
(x1)− k

1+k

(
ml−1
−kl−1

j
(x1)

)2

ql−1
−kl−1

j
(x1,x2)− k

1+k ml−1
−kl−1

j
(x1)ml

−kl−1
j
(x2)

ql−1
−kl−1

j
(x1,x2)− k

1+k ml−1
−kl−1

j
(x1)ml

−kl−1
j
(x2) ql−1

−kl−1
j
(x2)− k

1+k

(
ml−1
−kl−1

j
(x2)

)2

 .

Again, c∗(x1,x2) = 1 is a fixed point of the recursive map. On performing approximations
as in Section B.2, we find that the stability condition is again given by Eqn. B.2, which gives
σ2

w = 1.41 as the phase transition boundary. Comparing it with experiments (Fig. 3.7), we find that
it overestimates the critical value.

Note that instead of approximating sl−1
kl−1

j
by its RMS value

√
ql−1

s (x), we can also approximate

it by its mean value. In this case, we find that we overestimate all the boundaries. In Table C.1, we
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compare the boundaries predicted by the RMS and mean approximations.

Approximation (σ2
w)q(RAI) (σ2

w)c(RAAI) (σ2
w)q(RAAI)

RMS 0.57 1.41 1.75

Mean 0.85 1.46 1.89

Table C.1: A comparison of the decision boundaries obtained by approximating sl−1
kl−1

j
by its RMS

and mean value. The RMS approximation underestimates the length boundary for RAI, whereas
it overestimates both the phase boundaries for RAAI. On the other hand, the mean approximation
overestimates the phase boundaries for both RAI and RAAI.
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Appendix D

Code to generate weights drawn from RAAI
distribution

1 import numpy as np

2 def RAAI(fan_in , fan_out , k = 100, variance_weights = 0.9):

3 """ Randomized Asymmetric Anti -correlated Initializer (RAAI)

4 Arguments:

5 fan_in -- the number of neurons in the previous layer

6 fan_out -- the number of neurons in the next layer

7 k -- correlation strength for the Gaussian weights

8 variance_weights -- variance of the weights

9 Returns: W, b -- weight and bias matrices with shape(fan_in ,

fan_out), and (fan_out , ) """

10 corr = k/(1+k)

11 mean = np.zeros(fan_in + 1)

12 J = np.ones(( fan_in + 1, fan_in + 1))

13 cov = (np.identity(fan_in + 1) - J*(corr/( fan_in +1)) )*

variance_weights/fan_in

14 P = np.random.multivariate_normal(mean = mean , cov = cov , size = (

fan_out))

15 for j in range(P.shape [0]):

16 k = np.random.randint(0, high = fan_in + 1)

17 P[j, k] = np.random.beta(2, 1)

18 W = P[:, :-1].T

19 b = P[:, -1]

20 return W.astype(np.float32), b.astype(np.float32)
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Appendix E

Properties of ordered and chaotic phase

In this section, we attempt to explore the distribution of values a node attains. As the pre-activations
are Gaussian distributed, we plot the mean against the standard deviation over the training set for
the pre-activations for different nodes.

We observe that for ReLU networks with uncorrelated weights, which only have an ordered
phase, the mean value and the standard deviation of the pre-activations for a node are related,
whereas, for ReLU networks with anti-correlated weights, we see two different cases; in the or-
dered phase, the mean versus standard deivation show some correlation, whereas, in the chaotic
phase and the phase transition boundary they seem to be uncorrelated.
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(a) Uncorrelated initialization with σ2
w = 1,σ2

b = 0 (b) ACI with σ2
w = 1,σ2

b = 0.1

(c) Uncorrelated initialization with σ2
w = 2,σ2

b = 0 (d) ACI with σ2
w = 2,σ2

b = 0.1

(e) Uncorrelated initialization with σ2
w = 3,σ2

b = 0
(f) ACI with σ2

w = 2.5,σ2
b = 0.1

Figure E.1: Mean versus standard deviation of the pre-activation at various nodes
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